16021973314	7
-------------	---

Code No.: 16237 AS

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (C.S.E.) VI-Semester Advanced Supplementary Examinations, August-2022 Image Processing (PE-I)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20$ Marks)

Q. No.	Stem of the question	M	L	CO	PO
1.	What are the different processing for which input is an image and output is also an image.	2	2	1	1
2.	What is the number of colors we get if we use 6-bits for each of Red, Green and Blue channels?	2	3	1	2
3.	What are the different line detection operators?	2	1	2	1
4.	Give the Laplacian Masks.	2	1	2	1
5.	What is the appropriate representation of the given signal in frequency domain.	2	3	3	2
	Amplitude Time				
6.	a. Time-domain decomposition of a composite signal What is the use of converting spatial domain to frequency domain.	2	2	3	1
7.	Give names of EIGHT image formats.	2	1	4	1
8.	Explain Run-Length Coding with an example.	2	3	4	2
9.	Write the colors for A.B, C and D	2	3	5	1
,	Yellow A Magenta B D C Cyan	2	3	3	1

	F	Part-B	(5×6)	8 = 4	10 M	arks)								
. a) What are the	fundame	ntal ste	ps in	Imag	ge Pr	oces	ssing	? Ex	plain	l.	zi.	4	1	1	
b) What are the	application	ons of I	mage	e Pro	cessi	ng?	Exp	lain.				4	1	1	
a) Obtain the u	ın-norma	lized a	and t	he r	norm	alize	ed h	istog	grams	s of	the	5	3	2	
following 8-b	oit, M×N	image.	Give	you	ır his	togr	am e	either	r in a	table	or				
a graph, labe	eling clea	rly the	valı	ie ai	nd lo	cati	on o	of eac	ch h	istogr	am				
component in	terms of	M and	N. D	oubl	e che	ck y	our	answ	er by	mak	ing				
sure that the h	nistogram	compo	onent	s ado	d to th	he c	orrec	ct val	ue.						
							V+-20.		7						
	- 45						32		 		1				
	-	240	16	ĵ	228			255			ATOM.				
1	145						0								
					1										
		127	19	1			0								
									100						
n n					- mar	4									
	V.														
b) Obtain the a thresholding a			shold	by	usin	g b	y us	sing	Basi	c glo	bal	3	3	2	
	algorithm							sing	Basi	c glo	bal	3	3	2	
	algorithm $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. 2 3 5 6	4 7	3	2	1 2	5 1	sing	Basi	c glo	bal	3	3	2	
	algorithm $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. 2 3 5 6	4 7	3	2	1 2	5 1	sing	Basi	c glo	bal	3	3	2	
	algorithm $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. 2 3 5 6	4 7	3 4	2	1 2	5 1	sing	Basi	c glo	bal	3	3	2	
	algorithm $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. 2 3 5 6	4 7	3 4	2	1 2	5 1	sing	Basi	c glo	bal	3	3	2	
	algorithm $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. 2 3 5 6	4 7	3 4	2	1 2	5 1	sing	Basi	c glo	bal	3	3	2	
	algorithm $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. 2 3 5 6	4 7	3 4	2	1 2	5 1	sing	Basi	c glo	bal	3	3	2	
	algorithm $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. 2 3 5 6	4 7	3 4	2	1 2	5 1	sing	Basi	c glo	bal	3	3	2	
thresholding a	1 0 6 3 5 4 5 5 5	2 3 5 6 4 4 4 5 6 3 6 3 4 7 3 2	4 7 3 2 2 2 3 4	3 4 2 1 1 5 2 2	2 3 1 0 5 6 5 6	1 2 4 5 7 3 3 7	5 1 3 4 3 2 2 1				bal		3		
	1 0 6 3 5 4 5 5 5	2 3 5 6 4 4 4 5 6 3 6 3 4 7 3 2	4 7 3 2 2 2 3 4	3 4 2 1 1 5 2 2	2 3 1 0 5 6 5 6	1 2 4 5 7 3 3 7	5 1 3 4 3 2 2 1				bal	3	2	2	

Code No.: 16237 AS

	Original source Source reduction				
	Symbol Probability Code 1 2 3 4				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
b)	Given a five symbol source {a,b,c,d,e} with source probabilities {0.15, 0,2, 0.15, 0.2,0.3}, arithmetically encode the sequence <i>bbcbbc</i> .	5	3	4	2
15. a	What are the different color models? Explain.	4	2	5	1
b)	Explain Least squares filtering with an example.	4	3	5	2
16. (a)	Explain about Sampling and Quantization.	4	2	1	1
by	Explain any one smoothing filter with an example.	4	3	2	1
17.	Answer any <i>two</i> of the following:				
a)	Explain about DFT of one variable.	4	2	3	1
b)	Explain about different fidelity criteria used in image compression.	4	2	4	1

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	40%
iii)	Blooms Taxonomy Level – 3 & 4	40%
